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Abstract. Several experiments in the context of ladder materials have recently shown that the study of
simple models of anisotropic ladders (i.e. with different couplings along legs and rungs) is important for the
understanding of these compounds. In this paper Exact Diagonalization studies of the one-band Hubbard
and t − J models are reported for a variety of densities, couplings, and anisotropy ratios. The emphasis
is given to the one-particle spectral function A(q, ω) which presents a flat quasiparticle dispersion at the
chemical potential in some region of parameter space. This is correlated with the existence of strong pairing
fluctuations, which themselves are correlated with an enhancement of the bulk-extrapolated value for the
two-hole binding energy as well as with the strength of the spin-gap in the hole-doped system. Part of the
results for the spectral function are explained using a simple analytical picture valid when the hopping
along the legs is small. In particular, this picture predicts an insulating state at quarter filling in agreement
with the metal–insulator transition observed at this special filling for increasing rung couplings. The results
are compared against previous literature, and in addition pair-pair correlations using extended operators
are also here reported.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 74.72.-h High-Tc compounds –
75.40.Mg Numerical simulation studies – 79.60.-i Photoemission and photoelectron spectra

1 Introduction

The discovery of superconductivity in quasi-two dimen-
sional (2D) copper-oxide materials has led to a renewed
interest in the physics of doped Mott-Hubbard insulators
and in the interplay between magnetism and supercon-
ductivity. Recently another class of copper oxide materi-
als based on weakly coupled one dimensional (1D) lad-
ders [1] has been synthetised. Their structure is closely
related to the one of the 2D perovskites, namely it con-
tains S = 1/2 copper spins which are antiferromagneti-
cally coupled along the ladder direction (legs) and along
the rungs through Cu–O–Cu bonds. Recent experimen-
tal results reporting superconductivity [2] in the hole-
doped ladder cuprate Sr14−xCaxCu24O41 have clearly es-
tablished that the existence of a superconducting state is
not restricted to 2D doped antiferromagnets but it actu-
ally extends to a wider class of strongly correlated copper-
oxide materials. Thus, the novel ladder compounds offer
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new perspectives, both for experimentalists and theorists,
to understand the mechanism of superconductivity in
strongly correlated low-dimensional systems.

Ladder structures can also be found in other ox-
ides such as vanadates [3]. Magnetic susceptibility mea-
surements on MgV2O5 have been interpreted in terms
of weakly coupled Heisenberg ladders. In addition, re-
cent X-rays scattering experiments [4] have suggested
that NaV2O5 could be considered as a quarter-filled
ladder system.

While the stoichiometric parent compounds of the su-
perconducting 2D cuprates are antiferromagnetic Mott in-
sulators, the parent insulating ladders exhibit spin liquid
properties. The existence of a spin gap in a spin-ladder
structure has been first proposed theoretically [5,6] and
found experimentally in several even-leg ladder copper-
oxide systems (such as SrCu2O3 [1,7] and LaCuO2.5 [8]).

It has been suggested that the spin gap, if robust
under doping, could be responsible for an attractive in-
teraction between holes on the same rung [6,9]. Al-
though recent experiments [10] suggest that the spin gap
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disappears in hole-doped ladders at the high pressure
needed to achieve superconductivity, part of the spin exci-
tations are still suppressed as the temperature is lowered
in the normal state as predicted theoretically [11]. Such
a behavior bears similarities with the pseudogap behavior
of the underdoped 2D superconducting cuprates.

It is expected that the formation of hole pairs on the
rungs can lead to competing superconducting pairing or
4kF Charge Density Wave (CDW) correlations as e.g.
found in the weak coupling limit [12,13]. For isotropic t−J
ladders (i.e. with equal couplings along legs and rungs), it
has been established that the d-wave-like superconducting
pairing correlations [14] are dominant in a large region of
the phase diagram [15]. Such a state, which is referred to
as C1S0 in the language of the RG analysis [16], is char-
acterized by a single gapless charge mode and a gap in the
spin excitation spectrum [11] and belongs to the same uni-
versality class as the Luther-Emery phase of the 1D chain.
Because of the one-dimensional character of the system,
the superconducting correlations at large distances still
behave following power laws [13,15]. Using finite size scal-
ing analysis and conformal invariance relations [15], the
corresponding critical exponents have been computed in
the case of equal rung and leg couplings (isotropic case).
Note that a small Josephson tunneling between the lad-
ders is expected to give a finite superconducting critical
temperature [17]. At finite doping, the spin gap is ex-
pected to vanish below a small critical J/t ratio [15,18].
Presumably, such a transition is associated to an insta-
bility of the hole pairs gas towards a liquid made out of
individual holes with two spin and two charge collective
modes (C2S2 phase) [18]. Whether the disappearance of
the spin gap observed by NMR experiments in the doped
Sr14Cu24O41 superconducting ladder material under pres-
sure [10] is connected to such a transition is under much
debate.

Although the isotropic case is the most widely ana-
lyzed situation in the context of theories for ladders, it has
now become clear that most of the actual ladder materi-
als have in fact different leg (J‖) and rung (J⊥) magnetic
couplings and/or hopping matrix elements t‖ (legs) and
t⊥ (rungs). Recent neutron scattering experiments [19] on
the insulating ladder Sr14Cu24O41 actually suggest a ra-
tio of J⊥/J‖ ' 0.5. A similar anisotropy was in fact also
predicted previously in the context of the SrCu2O3 mate-
rial [20]. On the other hand, the vanadate ladder NaV2O5

apparently corresponds to the opposite limit of strong
rung couplings with a ratio t⊥/t‖ ' 2 [21] which could
justify a description at quarter-filling in terms of an effec-
tive 1D Heisenberg model [21,22].

The purpose of the present paper is to investigate
spectral properties and superconducting correlations of
anisotropic Hubbard and t − J ladders by exact diago-
nalization methods. Finite size scaling analysis is used to
obtain physical quantities such as the pair binding en-
ergy or the spin gap. Dynamical correlations functions
are also computed using a continued fraction method.
The focus of the paper will be on the role of the ladder
anisotropy (regulated by the ratios of the rung couplings

to the leg couplings) as well as on the influence of doping.
The anisotropic Hubbard ladder is defined as,

H = t‖
∑
i,α,σ

(c†i,α;σci+1,α;σ + h.c.)

+ t⊥
∑
i,σ

(c†i,1;σci,2;σ + h.c.) (1)

+ U
∑
i,α

ni,α;↑ni,α;↓ ,

where the index α stands for the chain index (= 1, 2).
Anisotropy ratios ra = t⊥/t‖ in the range 0.5 ≤ ra ≤
2.5 will be considered. Most of the calculations reported
below have been carried out in the strong coupling regime
U/t‖ = 8. Motivated by the doped cuprate and vanadate
ladders, the studies below are performed in the electron
density range 0.5 ≤ n ≤ 1. For U/t‖ � 1 and U/t⊥ � 1,
the low energy spin and charge degrees of freedom can be
described by the effective anisotropic t − J ladder with
doubly occupied sites projected out,

H = J‖
∑
i,α

(Si,α · Si+1,α −
1

4
ni,αni+1,α)

+ J⊥
∑
i

(Si,1 · Si,2 −
1

4
ni,1ni,2) (2)

+ t‖
∑
i,α,σ

(c̃†i,α;σ c̃i+1,α;σ + h.c.)

+ t⊥
∑
i,σ

(c̃†i,1;σ c̃i,2;σ + h.c.) ,

where c̃†i,α;σ = ci,α;−σ(1 − ni,α;σ) are hole Guzwiller
projected creation operators. The large-U limit of the
anisotropic Hubbard ladder leads to antiferromagnetic ex-
change couplings of the form Jβ = 4t2β/U in the two

directions β =‖,⊥. Hence, for simplicity, the relation
J⊥/J‖ = (t⊥/t‖)

2 will be here assumed even outside of
the range J⊥/t⊥ � 1 and J‖/t‖ � 1 of rigorous validity
of the equivalence between the two models. In the rest of
the paper, energies will be measured in units of t‖ unless
specified otherwise.

2 Single particle spectral function

2.1 Motivations

Let us examine first the one-particle spectral function,

A(q, ω) = Ae(q, ω) +Ah(q, ω) , (3)

where Ae(q, ω) corresponds to the density of the unoccu-
pied electronic states,

Ae(q, ω) = −
1

π
Im
〈
cq;σ

1

ω + iε−H +E0
c†q;σ

〉
0
, (4)



J. Riera et al.: Photoemission and superconducting correlations in ladders 55

and Ah(q, ω) corresponds to the density of the occupied
electronic states (i.e. unoccupied hole states),

Ah(q, ω) = −
1

π
Im
〈
c†q;σ

1

ω + iε+H −E0
cq;σ

〉
0
. (5)

Here
〈
...
〉

0
stands for the expectation value in the ground

state wave function of energy E0. The transverse compo-
nent of the momentum q takes only the two values q⊥ =
0, π corresponding to symmetric or anti-symmetric states
with respect to the reflection exchanging the two chains.
Ah(q, ω) and Ae(q, ω) are of crucial importance since they
can be directly measured in angular-resolved photoemis-
sion (ARPES) and inverse photoemission (IPES) spec-
troscopy experiments, respectively.

Thus far, the role of the anisotropy ratio t⊥/t‖ in dy-
namical properties of ladders has not been studied in de-
tail, except at half-filling n = 1. In this case, the spin
gap is remarkably robust and persists down to arbitrary
small interchain magnetic coupling J⊥ [23]. The single
particle (and two particles) spectral functions of the Hub-
bard ladder have been obtained at n = 1 using quantum
Monte-Carlo (QMC) simulations [24]. Working at U = 8,
two regimes were identified [24] depending on the mag-
nitude of the ratio t⊥/t‖. For instance, increasing t⊥ the
half-filled Hubbard ladder evolves from a four-band (at
small t⊥/t‖) to a two-band (at large t⊥/t‖) insulator. The
latter regime can be understood from the non-interacting
U ∼ 0 picture: in this case, two heavily weighted bonding
(q⊥ = 0) and anti-bonding (q⊥ = π) bands are separated
by an energy∼ 2t⊥ and the Fermi level lies in between. On
the other hand, a small fraction of the total spectral weight
is found in the inverse photoemission spectrum (ω > µ)
for q⊥ = 0 and in the photoemission spectrum (ω < µ)
for q⊥ = π. In fact, in the t⊥/t‖ > 1 limit, the spin-spin
correlation length is very short [24] and a description in
terms of a rung Hamiltonian (reviewed in the next sec-
tion) is appropriate (t‖ can then be treated as a small
perturbation).

In the other limit t⊥/t‖ < 1 of two weakly coupled
chains the magnetic correlation length along the chains di-
rection becomes larger. Although no magnetic long range
order exists, a description of the single particle properties
in terms of a Hartree Fock spin-density-wave (SDW) pic-
ture turns out to be reasonably accurate [24]. For both
q⊥ = 0 and q⊥ = π a dispersive structure is observed with
a (SDW-like) gap ∼ U separating the photoemission and
inverse photoemission energy regions. It is worth noticing
that the low energy electron or hole excited states now
occurs at momentum q = π/2 in contrast to the large
t⊥/t‖ limit where they occur at momenta q = π (ω < µ)
and q = 0 (ω > µ). The Hartree-Fock treatment correctly
predicts a bandwidth of order J‖ due to the magnetic scat-
tering (similar to the spinon-like excitations of the single
chain [25]). However, it fails to reproduce the broad inco-
herent background reminiscent of the holon excitations of
the single chain [25].

Away from half-filling (n = 1) QMC simulations face
the well-known “minus sign” problem (especially at low
temperature and large U) which increases the statistical

errors and, hence, reduces the accuracy of the analytic
continuation to the real frequency axis. Thus far, QMC
studies of the doped Hubbard ladder have been restricted
to U ≤ 4 in the range 1.4 ≤ t⊥/t‖ ≤ 2 and for tempera-
tures larger than t‖/8 [26]. Density matrix renormalization
group techniques, on the other hand, can currently only
provide information about static correlations [26]. A re-
cently developed variational technique based on the use
of a reduced Hilbert space once the ladder problem is ex-
pressed in the rung-basis [27] can produce accurate dy-
namical results on 2×20 clusters at zero temperature and
finite hole density [28]. However, this technique has been
applied only to isotropic ladders thus far. In the present
work, alternative approaches have been used. First, fol-
lowing reference [24], a simple estimation of A(q, ω) in
the single rung approximation has been carried out. This
calculation is valid in the limit of small t‖ and it is useful in
order to discuss the possible existence of metal–insulator
transition at commensurate densities such as n = 0.5 or
n = 0.75. This simple analytical scheme gives also a basis
for understanding more elaborate numerical calculations.
In a second step, exact diagonalization studies based on
the Lanczos algorithm were performed to investigate a
broad region of parameter space.

2.2 Local rung approximation: metal–insulator
transition

Let us consider the limit where t‖ is the smallest energy
scale, i.e. t‖ � t⊥ and t‖ � U . First, A(q⊥, ω) can be
calculated straightforwardly at densities n = 1 and n =
0.5 by diagonalizing exactly the single rung Hamiltonian
for 0, 1, 2 and 3 particles (see Ref. [24] for details). At
half-filling one obtains,

A(0, ω) = α2δ(ω−Ω(2, 1))+(1−α2)δ(ω−Ω(3′, 2)),

A(π, ω) = (1−α2)δ(ω−Ω(2, 1′))+α2δ(ω−Ω(3, 2)), (6)

where α2 = 1
2 (1+ 1√

U2+(4t⊥)2
) and Ω(n,m) correspond to

the excitation energies of the various allowed transitions
between a state with m particles to a state with n par-
ticles. Here, n, n′, n′′, etc. index the GS and the excited
states with n particles on a rung of increasing energy. The
poles of the spectral functions are given, also for increasing
energies, by

Ω(2, 1′) =
1

2
(U −

√
U2 + (4t⊥)2)− t⊥ ,

Ω(2, 1) =
1

2
(U −

√
U2 + (4t⊥)2) + t⊥ , (7)

Ω(3, 2) =
1

2
(U +

√
U2 + (4t⊥)2)− t⊥ ,

Ω(3′, 2) =
1

2
(U +

√
U2 + (4t⊥)2) + t⊥ .

The chemical potential µ lies between Ω(2, 1) and Ω(3, 2)
leading to the same integrated spectral weight (= 1)
in the photoemission and inverse photoemission parts of
the spectrum for all values of U . Hence, as expected,



56 The European Physical Journal B

the system is an insulator with a single particle gap of
∆eh =

√
U2 + 16t2⊥ − 2t⊥. However, since the weight α2

varies strongly with the ratio U/4t⊥, the distribution of
spectral weight changes qualitatively for increasing U as
shown in Figures 1a, 1b. At small U , α2 ∼ 1− 1

4 ( U
4t⊥

)2 and
one recovers, as in the non-interacting limit, two highly
weighted bonding (at an energy around −t⊥) and anti-
bonding (at an energy around t⊥) bands. When U →∞,
α2 → 1/2 and, thus, with increasing U spectral weight
is transferred to bonding and antibonding states further
away from the chemical potential. In the large U/4t⊥
regime, the system becomes a four-band insulator with 4
(almost) equally weighted poles and a Hubbard gap of or-
der U separating bonding or anti-bonding states at ω < µ
and ω > µ.

Note that a similar transition from a two-band to a
four-band insulator has also been observed in QMC stud-
ies of the half-filled Hubbard ladder [24] at finite t‖ and
fixed value U/t‖ = 8 by decreasing the ratio t⊥/t‖ from
2 to 0.5. In fact, U/t‖ = 8 and t⊥/t‖ = 2 correspond to
the intermediate regime U/4t⊥ = 1 where, according to
the previous t‖ → 0 estimate, only ∼ 15% of the spec-
tral weight is located in the side bands. For smaller t⊥,
more weight appears at the position of these two addi-
tional structures leading to four bands. In general, for
arbitrary ratio t⊥/t‖, one expects a transition to a four-
band insulator when U becomes sufficiently large com-
pared to the largest of the two hopping matrix elements
i.e. U � max{t⊥, t‖}.

Let us now turn to the discussion of the quarter-filled
case n = 0.5 where a similar local rung calculation leads
to,

A(0, ω) =
1

2
δ(ω −Ω(1, 0)) +

1

2
α2 δ(ω −Ω(2, 1))

+
1

2
(1− α2) δ(ω −Ω(2′′′, 1)) , (8)

A(π, ω) =
3

4
δ(ω −Ω(2′, 1)) +

1

4
δ(ω −Ω(2′′, 1)) ,

where the new energy poles are given by

Ω(1, 0) = −t⊥ ,

Ω(2′, 1) = t⊥ , (9)

Ω(2′′, 1) = t⊥ + U ,

Ω(2′′′, 1) = Ω(3′, 2) .

Since the chemical potential is located exactly between
Ω(1, 0) and Ω(2′, 1), the system is an insulator for all
values of U and (sufficiently) small t‖ (compared to U).
However, A(q⊥, ω) exhibits completely different forms at
small and large U couplings as observed in Figures 1c,
1d. At small U , as in the non-interacting case, the bond-
ing states and antibonding states are separated by an en-
ergy of order 2t⊥. However, each structure is split by a
small energy proportional to U and the chemical poten-
tial lies between the two q⊥ = 0 sub-bands. For large U ,
the gap becomes of order 2t⊥ and upper Hubbard bands
(of almost equal weights) of the bonding and anti-bonding

4
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tt

(b) n=0.5

(a)  n=1

(c) n=0.75

ω

ω

ω

U/4t = 1

U/4t =2

ω

ω

ω

(d)  n=1

(e) n=0.5

(f) n=0.75

U

0 U

0 U

0

Fig. 1. Schematic representation of the single particle spec-
tral function vs. frequency, in the t‖ → 0 limit. The posi-
tion of the single particle energy poles are indicated by ar-
rows whose lengths are proportional to the spectral weights
associated to the corresponding transitions. Arrows pointing
upwards (downwards) correspond to q⊥ = 0 (q⊥ = π). The
photoemission peaks (occupied states) and the inverse pho-
toemission peaks (empty states) correspond to full line and
dashed line arrows, respectively. The spectra are shown for ra-
tios U

4t⊥
' 1/4 ((a), (b) and (c)) and U

4t⊥
' 2 ((d), (e) and

(f)) and for electron densities n = 1, n = 0.5 and n = 0.75 as
indicated.

states appear at an energy ∼ U higher. Although this pic-
ture does not take into account t‖, the role of a small
t‖ can be easily discussed qualitatively. In fact t‖ is ex-
pected to give a dispersion in the chain direction and a
width to the various structures discussed here. When 4t‖
becomes comparable to the single particle excitation gap
∆eh, bands will start to overlap and a transition from the
insulator to a metallic state is expected [29], as will be
discussed in the next section. Since the single particle ex-
citation gap ∆eh = 1

2 (U −
√
U2 + 16t2⊥) + 2t⊥ is of the

order of the smallest of the two energy scales U/2 and
2t⊥, the insulating phase is then restricted to the range
4t‖ < min{U/2, 2t⊥}.

The existence of a metal-insulator transition is, in fact,
specific to quarter filling (besides the half-filled case which
is always insulating). A simple argument is here presented
to show that at other (commensurate) densities such as
n = 0.75 the metallic phase (i.e. with at least one gapless
charge mode) is stable for arbitrary small t‖. At n = 0.75,
a local rung calculation of A(q⊥, ω) requires to consider
as a GS two decoupled rungs on 4 sites with 2 and 1
particle, respectively. The spectral function is then given
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straightforwardly by the average of the spectral function
equations (6, 8) at densities n = 1 and n = 0.5. However,
the location of the chemical potential is a subtle issue:
since the states at the energy ω = Ω(2, 1) are completely
filled (empty) for n = 1 (n = 0.5), it is clear that this
state will become partially filled at n = 0.75 so that the
chemical potential is pinned at this energy. Consideration
of the spectral weights of the excitations shows immedi-
ately that, for arbitrary small t‖, the band centered at

ω = Ω(2, 1) (of weight 3
4α

2) is always 2
3–filled leading to

a metallic behavior. In this case, an additional interac-
tion, e.g. between nearest neighbor sites along the chains,
would be required to produce a metal-insulator transition.
Schematic representations of A(q⊥, ω) at n = 0.75 are
shown in Figures 1c, 1f at small and large U . At small U ,
as expected, the two bonding and anti-bonding structures
separated by ∼ 2t⊥ are clearly visible and the bonding
states at the lower energies are partially occupied. In this
limit, U leads essentially to small splittings of the various
structures into sub-bands (as for n = 0.5). For large U ,
the spectral function is qualitatively very different with 2
distinct bands around −t⊥ and t⊥ for both q⊥ = 0 and
q⊥ = π states. However, the upper Hubbard band around
an energy ∼ U is formed of two peaks (separated by 2t⊥)
for q⊥ = π while only one peak is present for q⊥ = 0.

Finally in this section a brief discussion of the case of
the t − J ladder is included. Since this model describes
only the low energy properties of the Hubbard model, the
corresponding spectral functions in the t‖ → 0 limit can
be obtained easily from the previous ones by discarding
the high energy peaks whose energy scales as U for large–
U , setting α2 = 1/2 and expanding energies to first order
in J⊥ = 4t2⊥/U . In fact, it can be easily shown that the
same expressions hold for the t−J model (with arbitrary
J⊥). Note that, due to the projection of the high energy
states, the spectral function of the t−J model follows the
new sum-rule

∫
A(q⊥, ω) dω = 1+x

2 (instead of 1), where
x = 1− n is the doping fraction. At half-filling one gets:

A(0, ω) =
1

2
δ(ω − (t⊥ − J⊥)) ,

A(π, ω) =
1

2
δ(ω − (−t⊥ − J⊥)) , (10)

with the chemical potential located at an higher energy
(∼ U/2). Similarly, at quarter-filling one obtains,

A(0, ω) =
1

2
δ(ω − (−t⊥)) +

1

4
δ(ω − (t⊥ − J⊥)) ,

A(π, ω) =
3

4
δ(ω − t⊥) , (11)

with the chemical potential located between −t⊥ and
t⊥ − J⊥. It is interesting to notice that, when J⊥ ex-
ceeds 2t⊥, the electron-like excitation becomes lower in
energy than the hole-like excitation. This signals the onset
of phase separation or, alternatively, some sort of charge
localization/ordering (such as charge density wave order-
ing). Physically, this occurs when the magnetic energy
gain of a singlet on a single rung becomes larger than
the kinetic energy of two particles on individual rungs.

2.3 Exact diagonalization results: Hubbard model

Let us now investigate the dynamical properties of the
Hubbard and t − J models for arbitrary parameters us-
ing exact diagonalization techniques. Cyclic 2×L ladders
are diagonalized and the (zero temperature) particle spec-
tral function is obtained exactly by a standard continued-
fraction procedure. Although in practice one is limited to
L = 8 (for the Hubbard model), both periodic (PBC) and
anti-periodic (ABC) boundary conditions can be used to
consider a sufficiently large number of momenta q‖ = n π

L
,

n = 0, 2L− 1.
The case of the Hubbard ladder will be considered first,

before focusing on the low energy excitations described by
the t−J model. The spectral function A(q, ω) at a density
of n = 0.75 is shown in Figure 2 for U = 8 and several
values of t⊥ ranging from 2.5 down to 0.5. Note that both
PBC and ABC have been used in Figure 2b while, in or-
der to reduce CPU time, only ABC (PBC) have been used
in Figure 2a (Fig. 2c). Two sharp structures separated
by an energy proportional to t⊥ can be attributed to a
bonding and an anti-bonding band. At the largest ratio
of t⊥/t‖ = 2.5 that have been considered, the spectrum
exhibits some features of Figure 1c obtained in the local
rung approximation at small coupling: (i) in the photoe-
mission part, a q⊥ = 0 sub-band of small spectral weight
can be observed at an energy of about U/2 from the main
q⊥ = 0 band crossing the chemical potential; (ii) a q⊥ = π
upper Hubbard band appears at an energy∝ U away from
the main (empty) q⊥ = π band. On the other hand, some
tiny structures characteristic of the strong coupling limit
(Fig. 1f) can also be observed: (i) a small spectral weight
exists at ω < µ (around ω ∼ −5) for q⊥ = π together with
(ii) a quite small q⊥ = 0 upper Hubbard band at ω > µ.
Interestingly enough, these features become more impor-
tant for t⊥ = 1.5 as shown in Figure 2b which corresponds,
in fact, to a larger ratio U/4t⊥ ' 1.3.

With decreasing electron density, the respective posi-
tion of the two main bands and the position of the Fermi
level seems to evolve as in a rigid-band scheme. How-
ever, there are important differences: (i) the bandwidth is
strongly reduced specially at smaller t⊥/t‖; (ii) the excita-
tions become sharper when the band crosses the chemical
potential. To the best of our knowledge, this is the first
observation in a numerical study of the broadening of the
“quasi-particle”-like peaks excitations as one moves away
from the chemical potential.

For a larger hole doping and working at a commensu-
rate value of n = 0.5 qualitative changes can take place in
the spectral function at sufficiently large U and t⊥. Data
are shown in Figure 3. For t⊥ = 0.5 the two partially filled
bonding and antibonding bands can be observed together
with their corresponding upper Hubbard bands at higher
energy. As expected from the previous t‖ → 0 analysis,
the spectral weight of the q⊥ = 0 upper Hubbard band, at
fixed U , gets strongly reduced for increasing t⊥ i.e. for a
decreasing ratio U/t⊥. At large enough t⊥, a gap appears
in the q⊥ = 0 structure, leading to two sub-bands and
an insulating behavior in agreement with the local rung
calculation. Such a metal-insulator transition is induced
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Fig. 2. Spectral function A(q, ω) of the Hubbard ladder for
U = 8 and n = 0.75. The left and right sides correspond to the
bonding (ky = 0) and anti-bonding states (ky = π), respec-
tively, and kx runs from 0 to π from the top to the bottom.
The position of the chemical potential is indicated by a vertical
dotted line. (a), (b) and (c) correspond to t⊥ = 2.5, t⊥ = 1.5
and t⊥ = 0.5, respectively.
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Fig. 3. Spectral function A(q, ω) of the Hubbard ladder for
U = 10 at quarter-filling n = 0.5. The left and right sides
correspond to the bonding (ky = 0) and anti-bonding states
(ky = π), respectively, and kx runs from 0 to π from the top to
the bottom. (a), (b) and (c) correspond to U = 10 with t⊥ = 5,
t⊥ = 2.5 and t⊥ = 0.5 respectively.
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by a combined effect of t⊥ and U : when t⊥ is large enough
the lower band becomes half-filled and a finite U, leading
to relevant Umklapp scattering, can then open a gap.

2.4 Exact diagonalization results: t − J model

In order to study more precisely the influence of doping at
small energy scales let us now focus on the t−J ladder [30].
Results at small hole densities n = 0.875 and n = 0.75
are shown in Figures 4 and 5 and are consistent with the
previous results on the Hubbard model.

Let us first discuss the role of the hole doping x = 1−n,
for the largest value of t⊥ = 2 considered here (see
Fig. 4a and Fig. 5a). For this choice of parameters, the
x-dependence can be qualitatively understood from the
single rung picture. For t‖ → 0 the GS contains a density
of 2x singly occupied bonds and 1 − 2x doubly occupied
bonds. By combining the spectral functions at n = 0.5
and n = 1 with the respective weights, one obtains a sim-
ple picture of the influence of doping consistent with the
numerical results at small (but finite) t‖. The q⊥ = 0 main
structure (which is the closest to the chemical potential at
half-filling) becomes partially filled with a weight of x/2
in the inverse photoemission part ω > µ. Note that the
dispersion of the band is especially flat in the vicinity of
the chemical potential at small x. With increasing doping,
weight is transferred from this structure (of total weight
1/2 − x/2) and from the upper Hubbard band (not de-
scribed by the t− J model) to q⊥ = 0 states further away
from the chemical potential. This leads to an emerging
structure of weight x at an energy of ∼ 2t⊥ − J⊥ below
the main band. Physically, in a photoemission experiment,
these small peaks correspond to processes where an elec-
tron on a singly occupied rung is removed by a photon
and leaves behind an empty rung. Note that this structure
becomes particularly strong at quarter filling (as seen in
Fig. 6a) where it carries 1/2 of the total spectral weight
(normalized to 1). In the q⊥ = π sector, the main structure
in the photoemission part of the spectrum ω < µ (barely
seen in the case of the Hubbard model for the parame-
ters chosen in the previous study) is also loosing spectral
weight upon doping with a total weight of 1/2 − x. The
missing weight (and some additional spectral weight from
the upper Hubbard band) is transferred into the inverse
photoemission spectrum leading to an emerging band of
total weight 3x/2 at ω > µ. Such states, obtained by sud-
denly adding an electron on a singly occupied rung could
be seen in an inverse photoemission experiment. At quar-
ter filling n = 0.5, as seen in Figure 6a, the transfer of
spectral weight is complete and the ω < µ, q⊥ = π struc-
ture has totally disappeared.

At smaller values of t⊥ (see Figs. 4b, 4c, 5b and 5c)
the two separate structures, both for q⊥ = 0 or q⊥ = π,
merge into a single broad structure. The data can be fairly
well described by (i) q⊥ = 0 and q⊥ = π bands dis-
persing through the chemical potential and (ii) a broad
incoherent background extending further away from the
chemical potential towards negative energies. Note that,
similarly to the previous case of the Hubbard model,
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Fig. 4. Spectral function A(q, ω) of the t − J ladder at
n = 0.875 and J‖ = 0.4. Conventions are similar to those of
Figure 2. (a), (b) and (c) correspond to t⊥ = 2, t⊥ = 1 and
t⊥ = 0.5, respectively.
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Fig. 5. Spectral function A(q, ω) of the t−J ladder at n = 0.75
and J‖ = 0.4. Conventions are similar to those of Figure 2.
(a), (b) and (c) correspond to t⊥ = 2, t⊥ = 1 and t⊥ = 0.5,
respectively.

the peaks of the band-like feature seem to become nar-
rower when they cross the chemical potential as expected
in a Fermi liquid description.

This section ends with a short discussion on the possi-
ble existence of small single particle gaps in the previous
data. The quarter-filled case is qualitatively different from
the low doping regime. At n = 0.5 the t‖ → 0 analysis un-
ambiguously predicts the existence of a gap in the single
particle spectrum at sufficiently large t⊥ and U . However,
when the q⊥ = π structure is not completely empty (i.e.
totally located in the ω > µ region of the spectrum), as it
is the case in Figures 3c, 6b and 6c, no gap is expected as
it is clear in the numerical data. Then, a metal–insulator
transition is expected by increasing t⊥ but whether this
transition is driven by t⊥ alone is still unclear. The data
of Figures 3a, 3b corresponding to a situation where the
antibonding band is clearly unoccupied do not allow to ac-
curately determine a critical value of t⊥ at which the gap
starts to grow. However, we have checked numerically (not
shown) that, by reducing t‖, the spectrum of Figure 3a
smoothly evolves into the spectrum obtained above in the
single rung approximation, e.g. exhibiting a well defined
gap at the chemical potential.

At small doping, on the other hand, the physical origin
of a small single particle gap would be quite different. In
this case, it would be related to the formation of pairs. In
the t‖ → 0 limit, pairs become stable only when J⊥ > 2t⊥,
i.e. when the magnetic energy on a rung exceeds the ki-
netic energy loss. Otherwise, for J⊥ < 2t⊥, the spin gap
is immediately destroyed by doping (strictly for t‖ = 0)
since the presence of singly occupied rungs leads to new
low-energy spin-1 excitations in the n = 1 spin gap (of
order J⊥). Therefore, intermediate ratios of t⊥/t‖ seem to
be more favorable for pair binding. Although spectra like
those shown in Figures 4b, 5b are not inconsistent with
the presence of a small gap at the chemical potential, the
study of pair binding from an investigation of the spec-
tral function at small energy scales around the chemical
potential is a difficult task. In order to clarify this issue, a
complementary study of static physical quantities is shown
in the next section.

3 Superconducting properties

3.1 Pair binding energy

In the limit where J⊥ is the largest energy scale, forma-
tion of hole pairs are favored on the rungs in order to min-
imize the magnetic energy cost. In fact, this simple naive
argument breaks down when t⊥ > J⊥/2 since holes on
separate rungs can then benefit from a delocalization on
each rung. In the large t⊥ limit, a simple 4-sites (2 rungs)
calculation shows that for J⊥/2 << t⊥, the pair binding
energy (which, as defined below, should be positive if a
bound state exists) behaves as J2

‖/4t⊥ − 2t‖. Very tightly

bound hole pairs are then not stable in the intermediate
regime. However, extended pairs have been shown to ex-
ist in some regime [6,9,31]. In this section, the stability
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Fig. 6. Spectral function A(q, ω) of the t−J ladder at n = 0.5
and J‖ = 0.2. Conventions are similar to those of Figure 2.
(a), (b) and (c) correspond to t⊥ = 2, t⊥ = 1 and t⊥ = 0.5,
respectively.

of the hole pairs as a function of the anisotropy ratio will
be investigated in detail.

To study the onset of pair binding, irrespective of the
actual size of the pair, the two-hole binding energy defined
by

∆B(L) = 2E(L, 1)−E(L, 2)−E(L, 0) , (12)

is considered, with E(L,Nh) being the GS energy of the
2×L ladder doped with Nh holes. E(L,Nh) (Nh = 0, 1, 2)
have been calculated on t − J ladders with periodic or
anti-periodic boundary conditions along the legs direction
and considering sizes up to L = 13. As previously, it has
been assumed for convenience that J⊥ = J‖(t⊥/t‖)

2. Typ-
ical finite size behaviors of ∆B(L) are shown in Figure 7
for different anisotropy ratios. Some caution is obviously
needed in order to extrapolate the results to the ther-
modynamic limit. At large t⊥ for a fixed choice of the
boundary conditions very regular oscillations in ∆B vs.
L appear (as observed for instance in Fig. 7a). However,
the data set corresponding to ladders with an even (odd)
number of rungs (L) and PBC can be combined with the
data set corresponding to ladders with an odd (even) num-
ber of rungs and ABC. The two resulting curves exhibit
a smooth behavior (full lines) which allow an accurate
extrapolation to the thermodynamic limit. For interme-
diate values of t⊥/t ∼ 1.25, the two data sets merge
into a single curve and finite size corrections become
particularly small.

For smaller ratios such as t⊥/t‖ ≤ 1 (see Fig. 7b), there
is a qualitative change of behavior. In this case, the data
corresponding to ladders with an odd number of rungs
(L = 2p + 1) have to be distinguished from the data ob-
tained for L = 2p. Indeed, in this parameter regime, the
spin correlation length along the chains becomes of the
order of the system size so that ladders with L = 2p and
2 holes suffer from a small magnetic frustration induced
by the boundary conditions. An accurate finite size scal-
ing analysis can nevertheless be realized by considering
the data for L = 2p + 1 which show again a very sys-
tematic behavior as a function of L; in fact, although the
behavior of the data sets corresponding to ladders with
L = 4p + 1 (L = 4p + 3) rungs and PBC follow only
roughly the same trend as the data set corresponding to
ladders with L = 4p+ 3 (L = 4p+ 1) rungs and ABC, av-
eraging over PBC and ABC leads to a single remarkably
smooth behavior of ∆B versus L as observed in Figure 7b.
A similar procedure can be followed for the data obtained
with L = 2p as shown also in Figure 7b but this extrapola-
tion is probably less reliable for the reasons stated above.
In all cases, the L → ∞ extrapolation is performed ac-
cording to ∆B(L) = ∆∞B + A 1

L
exp (−L/ξ), where ∆∞B ,

ξ and A are free parameters determined from a fit
to the data.

The extrapolated values of ∆B are displayed in
Figure 8 as a function of t⊥ for J‖ = 0.5. A posi-
tive binding energy (implying the stability of the hole
pair) is obtained for all parameters considered here. Re-
cent DMRG work using clusters with up to 2 × 30
sites and two holes have calculated the binding energy
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in the isotropic limit [32]. The result ∆B ∼ 0.2 reported
there is very close to the number found by our size extrap-
olation in Figure 8, giving extra support to our procedure.
For comparison, the spin gaps ∆0 and ∆2 in the undoped
GS and 2 hole doped GS, respectively are also shown.
The scaling behavior of ∆2 is very similar to that of ∆B

as can be seen in Figures 7c, 7d (although finite size ef-
fects are larger) and the same procedures to obtain the
extrapolations to L = ∞ have been used. Our extrapola-
tions for ∆0 are in good agreement with previous ED [33]
and QMC [34] estimates or with the weak coupling limit
behavior ∆0 ∼ 0.41J⊥. The behaviors of ∆B and ∆2 with
t⊥ are very similar, and both have a pronounced maxi-
mum of ∆B at t⊥/t ∼ 1.25. In fact it is expected that in
the 2 hole doped GS the lowest S = 1 excitations can be
obtained by either (i) breaking up a hole pair and flipping
one of the unpaired spins or (ii) making a spin excita-
tion away from the hole pair (which is supposed to have
a finite size). Therefore, one expects ∆2 = min {∆B,∆0}.
Our data indeed suggest two regimes: (i) For t⊥/t‖ ≤ 1.25,
the binding energy of a pair is larger than the spin gap in
the undoped system. This extra stability of the hole pair
is probably due to the strong antiferromagnetic correla-
tions within each chain. Note that, in this regime, there
are some small discrepancies between ∆2 and ∆0. This
effect is probably due to the fact that the size of the pair
is particularly large for such parameters and the two re-
gions corresponding to the undoped spin liquid and the
hole pair cannot truly separate in the clusters that can
be handled computationally leading to strong finite size
effects for ∆2. (ii) For t⊥/t‖ ≥ 1.25, the hole binding en-
ergy strongly decreases and the lowest spin excitation is
obtained by breaking a hole pair i.e. ∆2 ∼ ∆B. Note that
for even larger ratios t⊥/t‖ (typically t⊥/t‖ > 2.5), the
binding energy increases again. Clearly, this is an artifi-
cial effect due to the fact that, in our model, the rung
magnetic coupling scales like t2⊥ and becomes unphysi-
cally large compared to t⊥ for large enough t⊥. In that
case, ∆B ' J⊥ − 2t⊥ which approaches the spin gap ∆0

for large t⊥.

It is interesting to compare the results of Figure 8 with
the previous study of the collective modes of the t−J lad-
der [11]. On general grounds, two collective spin modes of
momenta q⊥ = 0 and q⊥ = π are expected in a doped spin
ladder. Both modes are gapped at moderate doping [11].
From a careful examination of the quantum numbers of
the various spin excitations shown in Figure 8, one can
safely study, at vanishing doping (i.e. for 2 holes in an
infinitely large system), each low energy excitation. The
collective q⊥ = π spin mode corresponds to the spin exci-
tation of energy ∆0 characteristic of the undoped system
(crudely an excitation of a singlet rung into a triplet). On
the other hand, the q⊥ = 0 spin mode is associated to the
breaking of a hole pair of energy ∆B . From our previous
analysis of the data, a level crossing occurs between these
two types of excitations around t⊥ ' 1.25 producing a
cusp-like maximum of ∆2.

Materials corresponding to the regime t⊥/t‖ > 1.25
should be particularly interesting to be studied by
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of the ladder length for J‖ = 0.5. Filled circles (open squares)
correspond to PBC (ABC). The values of t⊥ are shown on the
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Inelastic Neutron Scattering (INS) experiments at small
doping. Indeed, the above calculation predicts that, under
light doping, spectral weight in the dynamical spin struc-
ture factor S(q, ω) should appear within the spin gap of
the undoped material. This new q⊥ = 0 magnetic struc-
ture whose total weight should roughly scale with the dop-
ing fraction corresponds to the excitations of hole pairs
into two separate holes in a triplet state. The correspond-
ing energy scale for such excitations can be much lower
than the spin gap of the undoped spin liquid GS (q⊥ = π).

The maximum observed in ∆B for the t− J model at
J‖ = 0.5 as a function of t⊥ has similarities with the be-
havior of the pair-pair correlation obtained in the Hubbard
model at very small hole doping [26] n = 0.9375 which also
shows a maximum (around t⊥ ' 1.4 for U = 8). In refer-
ence [26], this particular value of t⊥ was associated with
the situation where the chemical potential coincides al-
most exactly with the top of the lower bonding band and
with the bottom of the upper antibonding band. In that
case, one expect a particularly large density of state at
the chemical potential (see also Ref. [38]). However, such
a correspondence was made possible at smaller U only
(due to difficulties to obtain accurate QMC calculations
of dynamical quantities at intermediate and large values of
U). The spectral function A(q, ω) shown in Figure 4b was
obtained in the two hole GS of the 2×8 ladder for a choice
of parameters (J‖ = 0.4 and t⊥ = 1) close to the ones pro-
ducing the maximum of ∆B in Figure 8. Figure 4b clearly
shows a large density of states in the vicinity of the chem-
ical potential due to the flatness of the dispersion around
q = (0, π) or q = (π, 0). This situation corresponds to the
cross-over between the two band and four band insulator
regimes observed at half-filling [24]. It is also interesting
to note that a small depression of the density of state is
visible in Figure 4b at the chemical potential. This could
be interpreted as a small gap associated to the existence
of a bound pair. More generally, in the so called C1S0
phase [13,15,18] where the spin gap survives, one expects
to see its signature in A(q, ω) as a gap at the chemical po-
tential. However, the energy scale of the spin gap is small
(see e.g. the order of magnitude of ∆2 in Fig. 8) com-
pared to the various features that appear in A(q, ω) and
thus, in most cases, its manifestation in A(q, ω) cannot
be observed on small lattices. In the recent studies using
a reduced Hilbert space, a gap caused by pairing in the
spectral function was observed on clusters with 2×16 and
2× 20 sites [28] in agreement with the data of Figure 4b.

3.2 Pair-pair correlations

ED studies supplemented by conformal invariance argu-
ments suggest that in the doped spin gap phase (C1S0) of
the isotropic t−J ladder (where pairs are formed according
to the previous analysis) algebraic superconducting and
4kF -CDW correlations are competing [15]. At small J/t
ratio, the CDW correlations dominate while above a mod-
erate critical value of J/t coherent hopping of the pairs
takes over. The aim of the present section is to investigate
the role of the anisotropy t⊥/t‖ by a direct calculation

of the pair-pair correlation as a function of distance. As
previously, in the case of the t−J model, a rung magnetic
coupling J⊥ = J‖(t⊥/t‖)

2 is used.
Superconducting correlations can be evidenced from a

study of the long distance behavior of the pair hopping
correlation,

CS(r − r′) =
〈
∆†(r)∆(r′)

〉
0
, (13)

where ∆†(r) is a creation operator of a pair centered
at position labeled by r. Although the best choice of
∆†(r) clearly depends on the internal structure of the hole
pair [35] as discussed later, it should exhibit general sym-
metry properties associated to the quantum numbers of
the hole pair found in the previous section: (i) ∆†(r) is
a singlet operator and (ii) it is even with respect to the
two reflection symmetries along and perpendicular to the
ladder direction (and centered at position r). The static
correlation function of equation (13) can be interpreted as
a coherent hopping of a pair centered at position r to a
new position r′.

According to conformal invariance, in a strictly 1D lad-
der (which is the case studied here) the pair hopping cor-
relation exhibits a power-law behavior at large distances
|r − r′|,

CS(r − r′) ∼ 1/|r− r′|
1

2Kρ , (14)

where the exponent Kρ was calculated in the weak cou-
pling limit [13] or in the isotropic t − J ladder by ED
methods using conformal invariance relations [15]. Super-
conducting correlations dominate when Kρ > 1/2 which
occurs for J/t > 0.3 in the lightly doped isotropic t − J
ladder [15]. Using a DMRG approach, the behavior of
CS(r − r′) with the usual BCS bond pair operator,

∆(i) = ci,1;↑ci,2;↓ − ci,1;↓ci,2;↑ , (15)

can also be obtained directly, leading, in the case of the
isotropic t − J model [14], to a good agreement with the
ED results. More recently, this study was extended to the
anisotropic Hubbard ladder [26] showing a pronounced
peak of the long-distance pair correlations as a function
of t⊥.

Here, as a complementary study of the analysis pre-
sented for the binding energy in the previous Subsection,
the behavior of the pair correlation function of the BCS-
like operator of equation (15) is compared against the case
where a spatially-extended pair operator is used. The first
motivation to introduce this new pair operator is due to
the structure of the hole pair; indeed, it turns out that
configurations in which the two holes sit along the diago-
nal of a plaquette carry a particularly large weight in the
2-hole GS both in the case of the 2D t−J model [35] or in
the case of the t− J ladder [31]. This feature seems coun-
terintuitive in a two-hole bound state of dx2−y2 character,
as it is the case e.g. in 2D (for ladders, this symmetry is
only approximate), since the pair state is odd with respect
to a reflection along the plaquette diagonals. However, it
has been observed [36] that retardation provides in fact
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a simple physical explanation of this apparent paradox.
Secondly, it is clear that pairs extending into a larger re-
gion of space can acquire more internal kinetic energy and
they are less sensitive to short distance electrostatic repul-
sion.

To study the influence of the spatial extension of the
pair operator ∆(r) on the pair-pair correlation, following
reference [35] here a plaquette pair operator is defined as

∆(i+ 1/2) = (Si,2 − Si+1,1) ·Ti,1;i+1,2

− (Si,1 − Si+1,2) ·Ti+1,1;i,2 (16)

where Ti,α;j,β = 1
i
ci,α;σ(σyσ)σσ′cj,β;σ′ is the regular (ori-

ented) spin triplet pair operator [37]. Physically, ∆†(i +
1/2) creates a singlet pair centered on a plaquette in a
dx2−y2 state with holes located along the diagonals of the

plaquette (at distance
√

2). The interpretation of this op-
erator is simple: starting from a hole pair located on a
rung, the hopping of one of the holes by one site along
the leg-ladder leaves behind a spin with the opposite ori-
entation than the local AF pattern. This argument nat-
urally leads to a 3-body problem [36] involving a triplet
hole pair and a local spin flip (of triplet character). For-
mally, this picture is equivalent to introducing some retar-
dation in the usual BCS operator i.e. the two holes can
be created at two different times separated by an amount
τ e.g. by applying ci,1;↑(τ/2)ci,2;↓(−τ/2) on the AF back-
ground. The expansion of this new operator to order τ2

then leads to the various terms of equation (16). Alter-
natively, ∆†(i + 1/2) can also be viewed as the simplest
dx2−y2 operator of global singlet character creating a pair
on the diagonals of a plaquette. This result can be deduced
from simple symmetry considerations [35].

Our results for Cs(r) in the case of the rung BCS-like
operator are shown in Figures 9a, 9b for the Hubbard and
t − J ladders, respectively. Both sets of data are consis-
tent with the power law decay and show a clear increase
of the correlations at intermediate distances. In the case
of the t − J ladder at n = 0.75, the maximum occurs
for t⊥ ' 1.5, a value slightly larger than the characteristic
value corresponding to the maximum of ∆B. According to
Figures 2 and 5 showing the single particle spectral func-
tions for almost identical parameters, this specific value
of t⊥ seems to correspond to the case where the chemical
potential sits in the vicinity of a maximum of the density
of states generated by very flat bands at the band edge (as
suggested in Ref. [26] and in agreement with the general
ideas discussed in Ref. [38]). On the other hand, it is likely
that the maximum of ∆B does not occur at exactly the
same value of t⊥ but rather at a somewhat smaller value.

The plaquette pair-pair correlations are shown in
Figure 9c. At short distance r = 1, the correlations are
suppressed reflecting the spatial extension of the pair op-
erator. At larger distances, r ≥ 2, a significant overall
increase is observed compared to the case of the rung op-
erator, showing that indeed the use of “extended” opera-
tors to capture the usually weak signals of superconduc-
tivity in doped antiferromagnetic systems is a promising
strategy [39]. Note that, apart from this overall factor,
the functional form of the decay seems to be identical
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Fig. 9. Pair-pair correlation function versus distance calcu-
lated on 2 × 8 clusters at density n = 0.75 with PBC in the
chain direction. The values of the anisotropy ra = t⊥/t‖ are
indicated on the plot. (a) rung-rung correlations in the Hub-
bard ladder for U = 10; (b) rung-rung correlations in the t−J
ladder for J‖ = 0.4; (c) plaquette-plaquette correlations (open
symbols) in the t − J ladder for J‖ = 0.4. For comparison,
some of the correlations of the rung pair operator of (b) are
also reproduced (small full symbols) on the same plot.
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to the one obtained for the rung operator (as can be
checked quantitatively).

It is interesting to compare the previous results of the
pair-pair correlations with the (rung) density-density cor-
relations,

CD(r − r′) =
〈
ρ(r)ρ(r′)

〉
0
, (17)

which, according to conformal invariance, is expected to
follow in the C1S0 phase a power law behavior of the form

CD(r − r′) ∼
cos (4kF (r − r′))

|r − r′|2Kρ
· (18)

The relationship between the two exponents characteris-
ing the power law behaviors (14, 18) reflects the compe-
tition between 4kF -CDW and SC fluctuations. As shown
in Figure 10 the density-density correlations show a pro-
nounced maximum at distance 4 which corresponds to the
occurrence of strong short range 4kF charge correlations
in agreement with (18). In other words, the pairs tend
to form, at short distances, a charge density wave with a
wave vector λ4kF /a = 1/nh (= 4 in this case). However,
our cluster sizes are not large enough to observe the alge-
braic decay of the charge correlations at longer distances.

0 1 2 3 4
r

0.2

0.3

0.4

0.5

0.6

C
D
(r

)

ra=1.0
ra=1.25
ra=1.5
ra=1.75
ra=2.0

t−J ladder
n=0.75
J=0.4
PBC

Fig. 10. Density-density correlation function of the t− J lad-
der J‖ = 0.4 versus distance calculated on 2 × 8 clusters at
density n = 0.75 and J‖ = 0.4. PBC in the chain direction are
used. The values of the anisotropy ra = t⊥/t‖ are indicated
on the plot.

We finish this section by a brief discussion on the con-
nection of this work to the experiments on the doped
Sr14−xCaxCu24O41 ladder material [10]. A fairly good de-
scription of the ambient pressure transport and NMR
properties of this material in term of an isolated ladder
(with ra ∼ 0.5) seems appropriate. Indeed, the resistiv-
ity in the direction of the ladders shows a clear metallic

behavior while some localization is seen perpendicular to
the ladders. This phenomenum can be interpreted by the
formation of pairs in the ladder (also compatible with the
opening of a spin gap as seen in NMR) hence reducing sin-
gle particle tunneling across the ladders. In this picture,
no 3D coherence is established although individual pairs
exist as expected in our model. In addition, the localiza-
tion observed at lower temperature in the ladder direc-
tion can be attributed to a pinned 4kF -CDW. The exact
nature of the SC phase under pressure is, on the other
hand, not resolved. Indeed, at P ' 30 kbar, the resistivity
becomes much less anisotropic and NMR measurements
suggest that the spin gap disappears above the supercon-
ducting transition temperature [10]. Therefore, it is not
clear yet whether this SC phase corresponds to the 3D
ordering of the dominant ladder pair-pair fluctuations by
Josephson coupling.

4 Conclusions

In this paper dynamical properties of anisotropic lad-
ders have been investigated using the one-band Hubbard
and t − J models. An analysis based on the local-rung
approximation explains a considerable part of the nu-
merical results. In particular, the existence of a metal-
insulator transition at quarter filling which can be justi-
fied in such an analysis was indeed numerically seen for
increasing anisotropy ratio. Flat quasiparticle dispersions
at the chemical potential are observed in regions of param-
eter space where pairing correlations are robust. A finite-
size scaling of the binding energy and the spin-gap show
that these quantities change with the anisotropy ratio in
a manner similar as the pair correlations do. In agreement
with previous results, it is observed that superconducting
correlations are maximized for anisotropic systems, with
couplings along rungs slightly larger than along the legs.
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